
This series explores modern appsec approaches. What tools
and techniques improve security within the SDLC? How do
we effectively combine manual analysis with automation?

How do we adopt what works and avoid what doesn’t?

Out of the AppSec Abyss:
What’s making modern appsec

effective?

Mike Shema
mike@cobalt.io
February 8, 2017

mailto:mike@cobalt.io

– comp.sys.acorn.misc. June 30, 1996

“Another 'application' of JavaScript is to poke holes in
Netscape’s security. To *anyone* using old versions of
Netscape before 2.01 (including the beta versions) you
can be at risk to malicious Javascript pages which can
 a) nick your history
 b) nick your email address
 c) download malicious files into your cache *and* run
them (although you need to be coerced into pressing
the button)
 d) examine your filetree.”

– Nigel Tufnel, Spinal Tap

“No one knows who they were
or what they were doing.”

“Time to die.”

HTML5 audio/video elements (eventually) replace
Flash.

Content Security Policy headers (partially) mitigate
XSS.

Prepared statements (actually) prevent SQL injection.

Outline the Eulogy
HTML5 audio/video elements (eventually) replace
Flash. — How can technology improve security?

Content Security Policy headers (partially) mitigate
XSS. — How can process address legacy code?

Prepared statements (actually) prevent SQL injection.
— How can people know to use available tools?

Content Security Policy
directives provide revelation
and restriction.

default-src 'self'

default-src 'https:'

{resource}-src 'none'

script-src 'unsafe-eval' 'unsafe-inline'

How
To
Transfer
Pages
Securely

Spawn threat models 
 — http://

Measure risk 
 — https://ssllabs.com

Solve sophisticated threat
models 
 — HSTS, HPKP

Solve fundamental threat
models 
 — Let’s Encrypt

https://ssllabs.com

Have
To
Take
Problems
Seriously

Enabling widespread
adoption by removing cost
as initial barrier to entry.

Enabling ongoing
adoption by supporting
automation (ACME
protocol).

https://letsencrypt.org

https://letsencrypt.org

From Abyss to Cloud

Continuous integration & deployment (CI/CD)
reimagines separation of duties, requires increased
testing.

Ephemeral systems favor retire and replace (with
updated image) over patch and preserve.

Systems become peers with code; managed via API
and treated as components.

From Cloud to Abyss

Avoid collapsing all security barriers between a code
commit and a production system.

Avoid over-exposing secrets.

Avoid polluting test environments with production
data.

Shifting Surfaces

Combining roles, striving for DevSecOps.

Virtualization, containers pushing towards syscalls
instead of systems.

App stacks and libraries have ever-increasing
dependency graphs, unclear security.

All Eyes Are Shallow

Bug Bounties are continuous (though unpredictable)
scrutiny with coordinated disclosure.

Largely address gaps where scanners aren’t present
or where scanners fail.

They’re PR — public relations and pull requests. Not
security programs.

Depths of Madness
Passwords as proof of identity continue to fail as
identical password are reused across applications.

Time for another PCI? — Password Control Initiative

More multi-factor instead of just more hashing.

Tokenize the password

Recovery (Facebook’s Delegated Recovery)

https://github.com/facebookincubator/DelegatedRecovery

So is it effective?

Cloud environments favor processes that drive
forward progress instead of accruing legacy systems.

Apps will always struggle with legacy code.

Continuous processes that emphasize automation
and feedback loops for “normal” testing create
touchpoints for security testing.

Thank you!

mike@cobalt.io

mailto:mike@cobalt.io

Questions?

https://webinar.cobalt.io

Stay tuned for more AppSec
Reanimated.

And check out the AppSec
Disrupted series, too!

https://webinar.cobalt.io

