black»a"
LIS A 2001=

Mike Shema

Vaagn Toukharian

blackhat
LISA 201=

Cross Site Request Forgery

* The confused, session-riding deputy
* Pros & cons of current countermeasures
e Improving verification of CSRF tokens -- DEMO

e Improving defenses -- DEMO & SPECS!

By Your Command

e Cross-origin requests are a core part of how the
web works.

e Effective CSRF only cares about generating a
request that affects a server-side context.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="refresh" content="0; url=https://another.origin/CSRF">
<link ref="prefetch" href="https://another.origin/CSRF">
</head>
<body>

<iframe sandbox src="https://another.origin/CSRF"></1iframe>
</body>
</html>

 Fundamentally, we want to distinguish between a
user-intended action and a browser-initiated one.

e Cross-origin requests that assume the victim’s
authorization are the problem (i.e. session
riding)

e HTML thrives on aggregating content from
different Origins -- there’s no reason to change
this.

Forging Ahead

e Creation

* SOP restricts reading the response from a
cross-origin request, not making one

e Cross Origin Resource Sharing makes
aggregation more flexible -- and has positive
implications for blocking CSRF.

e Counterfeit

e Predictable name/value pairs
e Valid, invalid, stripped Referer, Origin headers

Castles Made of Sand

e Tie the request to the user’s session --
authorization vs. authentication.

e Add a secret (e.g. entropy) to make it harder to
counterfeit

e Double submit cookie
e Anti-CSRF token (nonce)

Secrets & Entropy

e PRNG
e hash(hash(hash(...(PRNG)...)))
e HMAC-SHA256(PRNG, secret)
e HMAC-MD5
e HMAC-SHA512

“Puvrs jnf n gbnfgre.

HMAC

e Requires a strong secret
e Something other than the default value
e “keyboard cat”
e Something outside a dictionary
o]
123
e secret
e ShadOwfax

e Distributed, collaborative secrets

e http://www.phenoelit.org/blog/archives/2012/12/21/let_me_github that for you/
e http://nakedsecurity.sophos.com/2013/01/25/do-programmers-understand-private/

8 00 Advanced Code Search e
Advanced search session_secret Search

Advanced options OAUTH_CONSUMER_SECRET

From these owners

session_secret

In these repositones

mongodb://admin

Created on the dates

W RS N ssh://root@

T hrmac-sha256

Entropic Horror

e BH2012 -- PRNG: Pwning Random Number
Generators

e sjcl.random

e openssl rand 32 -hex

https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf
https://media.blackhat.com/bh-us-12/Briefings/Argyros/BH_US_12_Argyros_PRNG_WP.pdf

CSRF Cloaks Bad Design

e POST/GET method ignorance

e Password change mechanisms that don’t require
current password

e Missing barriers that rely on authentication to
perform actions.

e e.g. check-out and shipping to known vs. new
address

e Loose coupling of authentication, authorization,
and session.

Mobile Apps

e Recreating vulns from first principles
e Using HTTP instead of HTTPS
e Not verifying HTTPS certs

[=];
[=]

e But at least the apps are signed...

* More areas to explore
* Not a browser, but making HTTP requests
e CSRF potential of malevolent ad banners

Detection

e Pattern-based detection of token names
e Security by regex-icity
e Checks for presence, not effectiveness

e Active test
* “Cookie Swap” between user session contexts
e Determine enforcement, not predictability

O

black haf

LS A g

DEMO

‘/(ﬁ\'\’

blackhat

LSA 2013

14

Cross Origin Resource Sharing

e Control the forgery (i.e. creation) of “non-simple”,
Cross-origin requests

* X-CSRF: 1
e XCSRF /foo HTTP/1.1

® OO Web Inspector — evil.site — referer_xhr.php

B I <« » |[|CurrentlLog ' [0

O XMLHttpRequest cannot load http://web.site/HWA/ch3/resetPassword.
Origin http://evil.site is not allowed by Access-Control-Allow-0Origin.

>

Rely on SOP & HTML5

e Guarantees same Origin (or allowed cross-Origin)
e But only for “non-simple” XHR requests
e Must start inspecting the Origin header

e Limitations

e Must be part of app’s design and
implementation

* Breaks “simple” cross-origin requests

Crosstown Traffic

e HTML injection, cross-site scripting
* [t's executing in Same Origin

* CSRF countermeasures are intended to prevent
cross-origin attacks

e Start using Content Security Policy

* DNS, cache poisoning, sniffing, ...
e Start using HSTS
e Where did DNSSEC go?

Background Radiation of Insecurity

30%

~ NQ

15%

8%

0%

— |nsecure Flash/Scan
— Total Scans - |nsecure Java/Scan
Insecure Silverlight/Scan

20 months starting November 2011

18

Speaking of CSP

<!doctype html>

<html>

<head>

<meta http—-equiv="X-WebKit-CSP"
content="1mg-src 'none'; report-uri

‘"https://csrf.target/page?a=1&b=2&c=3"">

</head>

<body>

</body>

</html>

r ‘

19

Partial POST Request Forgery

POST /page?a=1&b=2&c=3 HTTP/1.1

Host: csrf.target

User-Agent: Mozilla/5.0 ...

Content-Length: 116

Accept: *x/x*

Origin: null

Content-Type: application/x-www—form—-urlencoded
Referer: http://web.site/HWA/ch3/csrf.html
Cookie: sessid=12345

Connection: keep—alive

document—-url=http%s3A%2F%2Fcsrf.target%s2FHWA
%2Fch3%2Fcsrf.html&violated-directive=default-
Src+%2/none%s2/

00 B ———
20

AND THEY HAVE A PLAN.

21

Security of Sessions

e Focus on the abuse of session context

e Session-riding, confused deputy

e Control when cookies accompany requests
initiated from a cross-origin resource

e Similar to CORS enforcement of “non-simple”
requests

e [solate the user’s session context

Simplicity of Settings

e Syntax like CSP, behavior like CORS
e Simple behavior with fewer chances of mistakes
e Leverage pre-flight

e Don’t require changes to application code
e Add headers via WAF
* Provide more flexibility by opt-in to exceptions

Should Often Succeed

e Don’t break the web, ease adoption
e Ad banners
e “first visit”, blank browsing context
e Deal with domains & subdomains vs. Origins

* Browsers have to support it

e Old, unpatched browsers forsaken to the
demons of insecurity anyway

Some Ordinary Syntax

* On the web application, define a policy:

Set-Cookie: cookieName=...
Content-Security-Policy.:

sos—app ly=cookieName; ‘self’
sos—apply=cookieName; ‘any’
sos—app ly=cookieName; ‘1isolate’
sos—apply=x; ‘self’

Policies

e self -- trigger pre-flight, cookie included only from
same origin unless given exception

e any -- trigger pre-flight, cookie included unless
given exception

e isolate -- no pre-flight, no exceptions. Cookie only
included from same Origin.

e(?) sos—remove=cookieName to remove policy

Some Ordinary Syntax

e If a cookie has a policy (or no policy), and a request
IS generated by a resource from the same Origin.

e ...work like the web works today.

e If a cookie has a policy of ‘isolate’, and a request is
generated by a cross-origin resource.

e ...never include the cookie.

e If a cookie has a policy of ‘any’ or ‘self’, and a
request is generated by a cross-origin resource.

e ...make a pre-flight check

Why Pre-Flight?

e Cookies apply site-wide (including subdomains!),
without granularity of resources.

e The /path attribute is broken

* An SOS policy instructs the browser for default
handling of a cookie.

e A particular resource can declare an exception by
responding to the pre-flight.

Pre-Flight Request

e (prereq) A policy of ‘any’ or ‘self’
* (prereq) Cross-origin resource initiates request

* Browser makes CORS-like request:

OPTIONS http://web.site/resource?a=1&b=2 HTTP/1.1
Host: web.site

User-Agent: ...

Origin: http://evil.site

Access-Control-S0S: cookiename cookienameZ2
Connection: keep—-alive

Content-Length: 0

Pre-Flight Response

e Web app receives a pre-flight request.

e Supply an expires value so the browser can cache
the response.

e ...if a policy should be enforced for the specific
resource:

HTTP 200 OK
Access—Control-S0S-reply: ‘allow’ | ‘deny’; expires=seconds

Pre-Flight Response

e ...if the resource is not exceptional, browser
follows established policy

e ‘any’ would include the cookie for cross-origin
e ‘self” would exclude the cookie for cross-origin

e Benefits
e Web app can enforce per resource, per cookie
e Sees the Origin header
e Expiration eases performance with caching

Two Sets

 Policy applies to cookies for all resources (entire
Origin)
* Policy can be adjusted by a resource

e Pre-flight response shouldn’t leak information
about cookies for which it has a policy

e [f the client can’t ask for the right cookie, then
no response.

e Respond with ‘deny’ if the cookie doesn’t exist

Remember

* Browser tracks...
e Cookies for which a policy has been applied.

e Resources that respond to cross-origin requests
with exceptions to the policy.

e Cookies and destination origin, source origin
doesn’t matter

* Web App
e Applies a policy at each Set-Cookie
e Applies a policy at a bottleneck

Goals

e Ease adoption
e Familiar syntax
e Small command set

e Acknowledge performance
e Cache pre-flight responses

e Only track “all other origins” to origin, not pairs
of origins

O

black haf

LS A g

DEMO

‘/(ﬁ\'\’

blackhat

LSA 2013

35

The “WordPress Problem”

e Strong anti-CSRF token is present in WordPress
trunk

* WP plugins keep forgetting to use it
e ../wp-admin/admin.php?page=...
* Must continually protect every new action

e ...or protect the /wp-admin/ directory
e sos-apply=cookieName; ‘self’

Mitigate Social Engineering

e Should prevent situations where user is tricked
onto clicking a link/submitting a form on
attacker’s page (i.e. different origin) that submits
to targeted origin

e Use X-Frame-Options to deal with clickjacking

If 6 Was 9

* No secrets, no entropy
e Easier on embedded devices, fewer mistakes
e Enforcement by origin
e Exception-based for flexibility
e Shift state tracking from server to browser
e Pre-flight can be handled by WAF
e ‘isolate’ and expire deal with overhead of pre-flight
e (Which is only for cross-origin anyway)

When Old Becomes New

e Update browsers

e Still have to support legacy, although the window to
the past is shrinking

e People still use old browsers for good reasons,
TorBrowser using FireFox ESR

* Fix frameworks
e Use cryptographically secure PRNG
e Don’t reuse example passphrases
e Use XHR brokering with custom headers

e Separate authentication and authorization

Summary

e Use HSTS
e Use CORS (i.e. “non-simple” requests)

e Send an SOS

SiX: ALL OF THIS HAS HAPPENED BEFORE.
BALTAR: BUT THE QUESTION REMAINS, DOES ALL OF THIS
HAVE TO HAPPEN AGAIN?

Thank You!

e DefCon HTTP Time Bandit
e Friday 2:30pm, Track 2

e http://deadliestwebattacks.com

References

e http://research.microsoft.com/en-us/um/people/
helenw/papers/racl.pdf

e https://media.blackhat.com/bh-us-12/Briefings/
Argyros/BH _US 12 Argyros PRNG_WP.pdf

e http://www.adambarth.com/papers/2008/barth-
jackson-mitchell-b.pdf

